Minggu, 13 Agustus 2023

Sistem Bilangan Digital dan Konversi Bilangan

 Pengertian 




Sistem Digital adalah suatu sistem yang berfungsi untuk mengukur suatu nilai atau besaran yang bersifat tetap atau tidak teratur dalam bentuk diskrit berupa digit digit atau angka angka .Biasanya sebelum mempelajari lebih dalam tentang sistem digital pertama pasti kita akan mempelajari yang namanya Sistem Bilangan. Sistem bilangan memiliki 4 macam yaitu Biner, Oktal, Desimal, HexaDesimal. 

1. Biner
Biner merupakan sebuah sistim bilangan yang berbasis dua dan hanya mempunyai 2 buah simbol yaitu 0 dan 1. istem bilangan biner modern ditemukan oleh Gottfried Wilhelm Leibniz pada abad ke-17. Sistem bilangan ini merupakan dasar dari semua sistem bilangan berbasis digital. Dalam penulisan biasanya ditulis seperti berikut 1010012, 10012, 10102, dll.

2. Oktal
Oktal merupakan sebuah sistim bilangan yang berbasis delapan dan memiliki 8 simbol yang berbeda (0,1,2,3,4,5,6,7). Dalam penulisan biasanya ditulis seperti berikut 23078, 23558, 1028, dll.

3. Desimal
Desimal merupakan sebuah sistim bilangan yang berbasis sepuluh dan memiliki 10 simbol yang berbeda (0,1,2,3,4,5,6,7,8,9). Desimal merupakan sistim bilangan yang biasa digunakan manusia dalam kehidupan sehari-hari.

4. HexaDesimal
HexaDesimal merupakan sebuah sistim bilangan yang berbasis 16 dan memiliki 16 simbol yang berbeda (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F). Dalam penulisan biasanya ditulis seperti berikut 2D8616, 12DA16, FA16, dll.

Konversi Bilangan


Konversi Bilangan digunakan untuk mengubah suatu bilangan dari suatu sistim bilangan menjadi bilangan dalam sistim bilangan yang lain.
  1. Biner

    1. Biner ke Desimal

Cara mengubah bilangan Biner menjadi bilangan Desimal dengan mengalikan 2n dimana n merupakan posisi bilangan yang dimulai dari angka 0 dan dihitung dari belakang.
Contoh : 110001diubah menjadi bilangan Desimal
1100012= ( 1 x 25 ) + ( 1 x 24 ) + ( 0 x 23 ) + ( 0 x 22 ) + ( 0 x 21) + ( 1 x 20 )
= 32 + 16 + 0 + 0 + 0 + 1
= 49
Jadi, 110012 = 49
    1. Biner ke Oktal

Cara mengubah bilangan Biner menjadi bilangan Oktal dengan mengambil 3 digit bilangan dari kanan.
Contoh : 11110011001diubah menjadi bilangan Oktal menjadi
11 110 011 001 = 112 = 21 + 20 = 38
= 1102 = 22 + 21 = 68
= 0112 = 21 + 20 = 38
= 0012 = 20 =18
Jadi, 111100110012 = 36318
    1. Biner ke HexaDesimal

Cara mengubah Biner menjadi bilangan HexaDesimal dengan mengambil 4 digit bilangan dari kanan .
Contoh: 01001111010111002 diubah menjadi bilangan HexaDesimal
0100 1111 0101 1100 = 01002 = 22 = 416
= 11112 = 2+ 2+ 2+ 2= 15 - F16
= 01012 = 2+ 20 = 516
= 11002 = 2+ 22 = 12 - C16
Jadi, 01001111010111002 = 4F5C16
  1. Oktal

a. Oktal ke Biner

Cara mengubah bilangan Oktal menjadi Biner dengan menjadikan satu persatu angka bilangan Oktal menjadi bilangan Biner dahulu kemudian di satukan. Untuk bilangan Oktal haruslah memiliki 3 digit bilangan Biner sehingga jika hanya menghasilkan kurang dari 3 digit makan didepannya ditambahkan bilangan 0.
Contoh : 2618 diubah menjadi bilangan Biner
261 = 28 = 0102
= 68 = 1102
= 18 = 0012
Jadi, 2618 = 0101100012

b. Oktal ke Desimal

Cara mengubah bilangan Oktal menjadi bilangan Desimal dengan mengubah bilangan Oktal tersebut menjadi bilangan Biner terlebih dahulu baru kita ubah menjadi bilangan Desimal.
Contoh : 2618 diubah menjadi bilangan Desimal
Langkah 1 : mengubah ke bilangan Biner
261 = 28 = 0102
= 68 = 1102
= 18 = 0012
Jadi, 2618 = 0101100012
Langkah 2 : mengubah bilangan Biner menjadi Desimal
010110001= ( 0 x 28 ) + ( 1 x 27 ) + ( 0 x 26 ) + ( 1 x 25 ) + ( 1 x 24 ) + ( 0 x 23 ) + ( 0 x 22 ) + ( 0 x 21 ) + ( 1 x 20 )
= 0 + 128 + 0 + 32 + 16 + 0 + 0 + 0 + 1
= 177
Jadi, 2618 = 177

c. Oktal ke HexaDesimal

Cara mengubah bilangan Oktal menjadi bilangan HexaDesimal dengan mengubah bilangan Oktal tersebut menjadi bilangan Biner terlebih dahulu baru kita ubah menjadi bilangan Desimal. Lalu kita ubah lagi menjadi bilangan HexaDesimal.
Contoh : 2618 diubah menjadi bilangan HexaDesimal
Langkah 1 : mengubah ke bilangan Biner
261 = 28 = 0102
= 68 = 1102
= 18 = 0012
Jadi, 2618 = 0101100012

Langkah 2 : mengubah bilangan Biner menjadi Desimal
010110001= ( 0 x 28 ) + ( 1 x 27 ) + ( 0 x 26 ) + ( 1 x 25 ) + ( 1 x 24 ) + ( 0 x 23 ) + ( 0 x 22 ) + ( 0 x 21 ) + ( 1 x 20 )
= 0 + 128 + 0 + 32 + 16 + 0 + 0 + 0 + 1
= 177

Langkah 3 : mengubah bilangan Desimal menjadi HexaDesimal
177 kita bagi dengan 16 - 117:16 = 11 sisa 1
11 : 16 = 0 sisa 11 - B
dibaca dari bawah maka menjadi B1
Jadi 2618 = B116
  1. Desimal

a. Desimal ke Biner

Cara mengubah bilangan Desimal menjadi Biner yaitu dengan membagi bilangan Desimal dengan angka 2 dan tulis sisanya mulai dari bawah ke atas.
Contoh : 25 diubah menjadi bilangan Biner
25 : 2 = 12 sisa 1
12 : 2 = 6 sisa 0
6 : 2 = 3 sisa 0
3 : 2 = 1 sisa 1
1 : 2 = 0 sisa 1
maka ditulis 11001
Jadi 25 = 110012

b. Desimal ke Oktal

Cara mengubah bilangan Desimal menjadi Oktal yaitu dengan membagi bilangan Desimal dengan angka 8 dan tulis sisanya mulai dari bawah ke atas.
Contoh : 80 diubah menjadi bilangan Oktal
80 : 8 = 10 sisa 0
10 : 8 = 1 sisa 2
1 : 8 = 0 sisa 1
maka ditulis 120
Jadi 80 = 1208

c. Desimal ke HexaDesimal

Cara mengubah bilangan Desimal menjadi HexaDesimal yaitu dengan membagi bilangan Desimal dengan angka 16 dan tulis sisanya mulai dari bawah ke atas.
Contoh : 275 diubah menjadi bilangan HexaDesimal
275 : 16 = 17 sisa 3
17 : 16 = 1 sisa 1
1 : 16 = 0 sisa 1
maka ditulis 113
Jadi 275 = 11316
  1. HexaDesimal

a. HexaDesimal ke Biner

Cara mengubah bilangan HexaDesimal menjadi Biner dengan menjadikan satu persatu angka bilangan HexaDesimal menjadi bilangan Biner dahulu kemudian di satukan. Untuk bilangan HexaDesimal haruslah memiliki 4 digit bilangan Biner sehingga jika hanya menghasilkan kurang dari 4 digit makan didepannya ditambahkan bilangan 0.
Contoh : 4DA216 diubah menjadi bilangan Biner
4DA2 = 416 = 01002
= D16 = 11012
= A16 = 10102
= 216 = 00102
Jadi 4DA216 = 01001101101000102

b. HexaDesimal ke Desimal

Cara mengubah bilangan biner menjadi bilangan desimal dengan mengalikan 16n dimana n merupakan posisi bilangan yang dimulai dari angka 0 dan dihitung dari belakang.
Contoh : 3C216 diubah menjadi bilangan Desimal
3C216 = ( 3 x 162 ) + ( C(12) x 161) + ( 2 x 160 )
= 768 + 192 + 2
= 962
Jadi 3C216 = 962

c. HexaDesimal ke Oktal

Cara mengubah bilangan HexaDesimal menjadi bilangan Oktal dengan mngubah bilangan HexaDesimal tersebut menjadi bilangan Desimal terlebih dahulu baru kita ubah menjadi bilangan Oktal.
Contoh : 3C216 diubah menjadi bilangan Oktal
Langkah 1: Mengubah bilangan HexaDesimal menjadi Desimal
3C216 = ( 3 x 162 ) + ( C(12) x 161) + ( 2 x 160 )
= 768 + 192 + 2
= 962

Langkah 2 : Mengubah bilangan Desimal menjadi Oktal
962 : 8 = 120 sisa 2
120 : 8 = 15 sisa 0
15 : 8 = 1 sisa 7
1 : 8 = 0 sisa 1
maka ditulis 1702
Jadi 3C216 = 17028


Contoh Pengoprasian :

Konversi Desimal ke Hexadesimal
1583(10) = …. (16)
Caranya:
1583 : 16 = 98 sisa 15 = F
98 : 16 = 6 sisa 2
Sehingga 1583(10) = 62F(8)
Konversi Oktal ke Desimal
324(8) = …. (10)
Caranya:
324(8) = 3 x 8² + 2 x 8′ + 4 x 8°
= (3 X 64) + (2 X 8) + (4 x 1)
= 192 + 16 + 4
= 212(10)
Jadi, 324(8) = 212(10)

Konversi Hexadesimal ke Desimal
B6A(16) = …. (10)
Caranya:
B6A = (11 x 16²) + (6 x 16′) + (10 x 16°)
= (11 x 256) + (6 x 16) + (10 x 1)
= 2816 + 96 + 10
= 2922
Sehingga B6A(16) = 2922(10)

Konversi biner ke Oktal
1001110(2) = …(8)
kalau susah rubah dulu saja ke (10) sehingga menjadi 78 yang diperoleh dari:
0 x 2^0 = 0 (lihat dari belakang terus kedepan)
1 x 2^1 = 2
1 x 2^2 = 4
1 x 2^3 = 8
0 x 2^4 = 0
0 x 2^5 = 0
1 x 2^6 = 64
sehingga ke decimal = 64+0+0+8+4+2+0 = 78
Sekarang 78(10) = …(8)?
78 / 8 = 9 sisa 6
9 / 8 = 1 sisa 1
Jadi hasilnya 78(10) = 116(8), atau 1001110(2) = 116(8)


https://rodablog.com/
https://khairina.blog.uma.ac.id/wp-content/uploads/sites/394/2018/10/Sistem-Bilangan.pdf

Kamis, 10 Agustus 2023

Logika Informatika: Mengenal Konjungsi, Disjungsi, Implikasi dan Biimplikasi

 Dalam ilmu logika informatika dikenal yang namanya kalimat majemuk. Kalimat majemuk adalah sebuah kalimat yang tersusun dari dua kalimat atau lebih dan dengan menggunakan kata hubung tertentu. Ada beberapa jenis kalimat majemuk di antaranya adalah sebagai berikut;



1. KONJUNGSI
Konjungsi adalah suatu kalimat majemuk yang menggunakan kata hubung "DAN" / "AND". Notasinya adalah "^".

contoh kalimat 1:
premis 1(p): Andi adalah seorang mahasiswa. (BENAR)
premis 2(q): Andi adalah seorang karyawan perusahaan swasta. (BENAR)
konjungsi(p^q): Andi adalah seorang mahasiswa dan karyawan perusahaan swasta. (BENAR)

contoh kalimat 2:
premis 1(p): Ayam adalah unggas. (BENAR)
premis 2(q): Burung kutilang adalah mamalia. (SALAH)
konjungsi(p^q): Ayam adalah unggas dan burung kutilang adalah mamalia. (SALAH)

Tabel kebenaran dari konjungsi:
 

Catatan: Konjungsi baru bernilai benar apabila kedua premis bernilai benar. Jika salah satu atau kedua premis bernilai salah maka nilai pernyataan / kalimat tersebut salah.


2. DISJUNGSI
Disjungsi adalah suatu kalimat majemuk yang menggunakan kata hubung "ATAU" / "OR". Notasinya adalah "v".

contoh kalimat disjungsi 1:
premis 1(p): Dalam pelajaran TIK, siswa menggunakan komputer sekolah. (BENAR)
premis 2(q): Dalam pelajaran TIK, siswa boleh membawa laptop sendiri. (BENAR)
disjungsi(pvq): Dalam pelajaran TIK, siswa boleh menggunakan komputer sekolah atau membawa laptop sendiri. (BENAR)

contoh kalimat disjungsi 1:
premis 1(p): Air adalah benda cair. (BENAR)
premis 2(q): Es adalah air yang mendidih. (SALAH)
disjungsi(pvq): Air adalah benda cair atau es adalah air yang mendidih. (BENAR)

Tabel kebenaran dari disjungsi

catatan: Disjungsi bernilai salah apabila kedua premis pembentuknya bernilai salah. Jika salah satu atau kedua premis bernilai benar maka disjungsi bernilai benar.


3. IMPLIKASI
Implikasi adalah kalimat majemuk yang menggunakan kata hubung "JIKA" p "MAKA" q. Implikasi disebut juga kalimat bersyarat tunggal artinya jika kalimat p bernilai benar maka kalimat q pun akan bernilai benar juga. Notasi dari implikasi adalah "=>"

p => q dapat dibaca dengan beberapa cara, di antaranya:
- Jika p maka q.
- q jika p.
- p adalah syarat yang cukup untuk q.
- q adalah syarat yang diperlukan untuk p.

Contoh implikasi 1:
premis 1(p): Anita kuliah di Universitas Binadarma. (BENAR)
premis 2(q): Anita adalah mahasiswa. (BENAR)
implikasi(p=>q): Jika Anita kuliah di Universitas Binadarma maka Anita adalah mahasiswa. (BENAR)
 
Contoh implikasi 2:
premis 1(p): 2+2=7. (SALAH)
premis 2(q): 6x2=12. (BENAR)
implikasi(p=>q): Jika 2+2=7 maka 6x2=12. (BENAR)

Contoh implikasi 3:
premis 1(p): Bumi itu bulat. (BENAR)
premis 2(q): Bulan berbentuk prisma. (SALAH)
implikasi(p=>q): Jika bumi itu bulat maka bulan berbentuk prisma. (SALAH)

Tabel kebenaran implikasi:

catatan: Implikasi baru bernilai salah bila nilai dari pernyataan (q) setelah kata "maka" bernilai salah. Ini disebabkan pernyataan setelah "maka" adalah kesimpulan dari kalimat majemuk tersebut.


4. BIIMPLIKASI
Biimplikasi merupakan kalimat bersyarat ganda. Biimplikasi menggunakan kata hubung JIKA DAN HANYA JIKA. Notasinya: "<=>"

Untuk lebih memahami biimplikasi, perhatikan kalimat berikut: 

 

 

 

"Jika saya sakit maka saya tidak berangkat kuliah."

 

 

Apakah saya tidak berangkat kuliah hanya jika dikarenakan saya sakit saja? Tidak. Banyak alasan lain selain sakit yang menyebabkan saya tidak berangkat kuliah. Bisa karena keperluan keluarga, cuti, hari libur, hari hujan dan lain sebagainya. Ini menandakan bahwa kalimat di atas adalah implikasi bukan biimplikasi.

kalimat selanjutnya.

"Jika nilai ujian matematika saya lebih dari 7.50 maka saya lulus."

 

 

Apakah saya bisa lulus selain jika nilai matematika saya lebih dari 7.50? Tidak. Satu-satunya syarat kelulusan adalah bila nilai ujiannya lebih dari 7.50. Inilah yang disebut biimplikasi.

Tabel kebenaran biimplikasi:

Biimplikasi equivalen (senilai) dengan jika p maka q dan jika q maka p;

p<=>q ≡ (p=>q)^(q=>p)

 

 

tabel kebenaran:

 

menangkap apel